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We prove theorems pertaining to periodic arrays of spherical obstacles which 
show how the macroscopic limit of the mean free path depends on the scaling 
of the size of the obstacles. We treat separately the cases where the obstacles are 
totally and partially absorbing, and we also distinguish between two-dimen- 
sional arrays, where our results are optimal, and higher dimensional arrays, 
where they are not. The cubically symmetric arrays to which these results apply 
do not have finite horizon. 
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1. I N T R O D U C T I O N  

The idea of the "mean free path" for large ensembles of particles interacting 
among themselves (or moving among obstacles or within an enclosure) is 
quite intuitive, and lies at the foundations of kinetic theory as conceived by 
Maxwell and Boltzmann in the late nineteenth century. For  a given physi- 
cal system, estimates of the mean free path are important  in determining 
the sort of dynamics that predominates. However, actually calculating the 
mean free pa th - - even  in many  simplified models- - i s  problematic, and it is 
often necessary to resort to dimensional  arguments that are not  wholly 
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rigorous. One family of simplified models that has played an important role 
in statistical mechanics and kinetic theory is the so-called Lorentz gas in a 
plane dispersive billiard consisting of a periodic array of circular obstacles, 
together with its higher dimensional analogs. In kinetic theory, it is par- 
ticularly interesting to study the behavior of particles in such billiards in 
the macroscopic limit (i.e., as the size of the array is reduced to zero). In 
this paper, we prove theorems pertaining to periodic arrays of spherical 
obstacles which show how the macroscopic limit of the mean free path 
depends on the scaling of the size of the obstacles. We treat separately the 
cases where the obstacles are totally and partially absorbing, and we also 
distinguish between two-dimensional arrays, where our results are optimal, 
and higher dimensional arrays, where they are not. The interesting aspect 
of these results is that the (hyper-) cubically symmetric arrays to which 
they apply do not have finite horizon (i.e., the arrays have unbounded 
trajectories). 

The Lorentz gas has been widely studied: Bunimovich and Sinai (4) and 
Bunimovich et al. ~5) construct (analogs of) Markov partitions to analyze 
the "hydrodynamic limit" (in this case a Brownian motion) of a Lorentz 
gas with finite horizon. But the hydrodynamic limit corresponds to cases 
where the mean free path tends to zero, something that is assured in refs 
4 and 5 by the scaling and the geometric hypothesis of finite horizon. The 
"kinetic" regime (also known as the Boltzmann-Grad limit) corresponds to 
cases where the limiting value of the mean free path is of the order of the 
unit length: hence this limit appears for periodic Lorentz gases only in 
cases where the finite horizon hypothesis does not hold. The Boltzmann- 
Grad limit of the Lorentz gas has been studied by many authors, but essen- 
tially only for random distributions of obstacles. ~9" ~6. 3~ The Boltzmann- 
Grad limit for clouds of interacting particles (leading to the nonlinear 
Boltzmann equation) was investigated on a rigorous basis by Lanford II-'~ 
and subsequently by Illner and Pulvirenti ~H~ (in the two-dimensional case) 
and by Pulvirenti. ~3) 

However, as can be seen from the discussion below, the case of a 
square (or cubic, or hypercubic) array of spherical obstacles involves num- 
ber-theoretic questions (essentially rational approximation) in a structural 
way. Because of this, the results we find in (space) dimensions higher than 
two are not as good as those we find in two dimensions. The higher dimen- 
sional case involves "simultaneous rational approximation" (of several real 
numbers by fractions with the same denominator), while the two-dimen- 
sional case entails approximation of one real number by a sequence of 
rationals where the algorithm of continued fractions is known to be in 
some sense optimal. For discussions of these questions, we refer the inter- 
ested reader to Cassels ~6~ and Schmidt. ~4~ 
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2. THE n -D IMENSIONAL DISPERSIVE BILLIARD AND ITS 
MEAN FREE PATH 

The n-dimensional analog of a periodic, planar array of circular 
scatterers with square symmetry is simply the periodic array of spherical 
obstacles defined as follows. First, denote by ~ = a e Z  ~ the (hyper-) cubic 
lattice in R" with interstitial spacing ae. The billiard domain is then 

Z , =  { x e R "  I dist{x, 4 }  > rer} (1) 

Here e > 0 is a small parameter which controls the spacing between 
obstacles in the array, while the exponent ), controls the way the size of 
the obstacles scales with e (we assume that ), >/1 and 0 < 2r <a ,  so that 
obstacles do not overlap in the macroscopic limit e ~ 0). 

Using dimensional arguments, it is possible to estimate the order of 
magnitude of the mean free path for a population of point particles moving 
between the obstacles with constant speed c (neglecting collisions between 
particles). 4 To see this, note that for a given geometry, the mean free path 
diminishes as the volume-density of obstacles--or as the size of the 
obstacles--increases. It therefore seems plausible to suppose that the order 
of magnitude of the mean free path is given by 

1 
N , S ,  (2) 

where N, is the density of obstacles per unit n-dimensional volume and 
S, is an ( n -  1 )-dimensional volume element (so that the above expression 
has the dimension of length) measuring the size of the obstacles. For 
example, for S,, one could take the (n - 1 )-dimensional volume (physically, 
the "cross-section") of the transverse section of an individual obstacle, so 
that S, = IB"- ~lr"- ~e r( '- ~ [here IB"- ~1 denotes the (n - 1)-dimensional 
volume of the unit ball B "-~ in R"-~; for example IB ' I=2,  IB21=K, 
IB31 =~rc, etc.]. Using this ansatz together with (2), we arrive to the 
following estimate of the order of magnitude of the mean free path in Z~: 

a n 

IB._~I  r " -  ~ e "-~ ' ( ' -  ~1 (3)  

The same expression is found after a more detailed analysis using diffusive 
billiard dynamics for Z,  in the sense of "weak consistency. ''(1~ Regardless 

4 One could reduce the number of parameters in the problem by adapting the length and time 
scales so that a = 1 and c = 1. However, we kept these extra parameters so that expressions 
like (3)--see below--clearly define a length. 
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of the process used to obtain the estimate of the mean free path (3), it 
suggests that the value Yc = n / ( n -  1) of the parameter y is critical in the 
following sense: 

�9 For 1 ~< 7 < 7c, the mean free path tends to zero with e. Assuming 
specular reflection of particles from the obstacles, one expects the move- 
ment of the particles in Z.  to be given by an equation of hydrodynamic 
type. (4~ 

�9 For y > y,., the mean free path tends to infinity as e-~ O. It is then 
trivial to show that the motion of the particles in Z~ is governed by a free- 
transport equation. Perhaps the most crucial question along these lines is 
the following: 

�9 For Y = Yc, is the mean free path of order 1 as e ~ 0, and can one 
describe the corresponding motion of the particles in Z,  by a kinetic 
equation? 

The methods described below do not answer this question; we refer 
instead to a forthcoming paper tlS~ for partial results in that direction. In 
this paper, we show rigorously that in dimension 2, Yc has the value 
suggested by formula (3); and in higher dimensions, we obtain estimates of 
yc which are consistent with (3). 

In any case, no rigorous calculation of the mean free path in Z,  exists, 
in part because of the presence of unbounded trajectories (e.g., some trajec- 
tories parallel to the axes of the lattice .L~~ are unbounded) and the presence 
of arbitrarily long trajectories. 

3. T R A N S P O R T  E Q U A T I O N  F O R M A L I S M  

We shall consider two types of problems: case A, where particles are 
totally absorbed at the boundary of Z~; and case B, where, upon reaching 
the boundary of Z.  particles are partially absorbed, then reflected with 
coefficient of reflection ~ (0<0~<1;  our methods unfortunately do not 
apply to the case of total reflection 0c -- 1). 

Let f .(t,  x, co) be the density of particles at the point x, at time t, 
moving in the direction co e S"-~. We write 

F ~  = {(x, co)eOZ, x S " - '  I to.n_,.>0} (4) 

where n,. is the inward normal at the point x ~ OZ,. (Here "inward" means 
toward the interior of Z~; away from the centers of the balls Z~.) The 
equation satisfied by f ,  is 

O,f ,+cro.y, . f ,=O, x e Z ,  (5) 
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with initial data 

f.(O, x, 09) = ~b(x, 09), x e Z .  (6)  

and with either the condition of totally absorbing boundaries (case A) 

f.(t ,  x, 09) = O, (x, 0 9 ) e F  + (7a) 

or the condition of partially absorbing/partially reflecting boundaries 
(case B): 

f~( t ,x ,  09)=ctf~(t,x, Yl(n~)09), (x, 09)eF~ + (7b) 

Here ~t(nx)09 represents specular reflection: 9t(n,.)09 = 09-2(09. nx)n,.; and 
is a nonnegative function defined on the whole of R"x  S " -  

We may write the solution of (5), (6), (7a) using the method of 
characteristics. Let r,(x, co) be the time of exit from Z~; in other words, 

re(x, co) = inf{ t > 0 I x - tc09 ~ OZ~} (8)  

For fixed x ~ Z,,  r~(x, 09) is finite for almost every co ~ S '-~.  (In fact, for 
"irrational" co that is, co such that V k ~ Z " \ { O } ,  k .  09~0  it is well known 
that the trajectory of every point of the torus T " =  R"/Z" is dense in T"; 
in other words, the linear flow in the direction o9 on T" is topologically 
transitive.) The solution of (4), (5), (6a) is given by 

f.(t ,  x, to) = lo.<, < ~,r tc09, 09) (9) 

and this formula shows that if r,(x, 09) ~ 0 as e ~  0, thenf,( t ,  x, 09) ~ 0. On 
the other hand, if, for any initial data ~b bounded on R" we had f ,  ~ 0 as 
e ~ 0, this would mean that the equivalent effective cross section of absorp- 
tion (as e ~ 0) of the array of obstacles Z,  is infinite, or, what amounts to 
the same thing, that the mean free path tends to 0 with e. Formula (8) 
therefore shows that in order to establish that ), < 7c, it suffices to show 
that f ,  ~ 0 for the initial data ~ = 1. 

R e m a r k  1. Usually, the types of questions addressed in the present 
paper are solved by considering the "free path distribution," i.e., 

" p~( t )=meas(  {x, 09)e Z~ •  09) > t} ) 

Relation (9) links the free path distribution p,  to the number density of par- 
ticles f~ in the following way: for any nonnegative initial number density ~b 

meas( { (x, co) e Z~ x S ' -1  If,(t, x, 09) ~ 0} ) ~</t~(t) 
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On the other hand, if one chooses ~ --- 1, the inequality above becomes an 
equality. So, for fixed t > 0, showing that p~(t) ~ 0 is equivalent to showing 
that f , ( t , . ,  . ) converges to 0 in the measure sense. Thus, by using this 
remark, all the results contained in the present paper could easily be 
rephrased in terms of the limiting behavior of the free path distribution. 

Here we have chosen to use the formalism of transport equations 
rather than free path distributions for the following reasons: 

�9 Transport equations are the unifying concept common to both the 
approach involving weak consistency (developed in ref. 10) and to the 
present paper. 

�9 The treatment of the subcritical case (7 > 7~) is particularly simple 
if one uses PDE techniques: see Remark 5 following Theorem 2B and the 
proof thereafter. 

4. PRINCIPAL RESULTS 

We give several results affirming formula (3). For two-dimensional 
arrays, we state theorems implying 7c = 2. For higher dimensional arrays, we 
state similar but slightly weaker theorems which show that n / ( n - 2 / 3 )  ~< 
7c <~ n / ( n - 1 ) .  As before, we divide these statements into those for totally 
absorbing obstacles and those for partially absorbing obstacles. 

4.1. The Case of Total Absorption 

As mentioned above the best result concerns the case where the 
dimension of the space is two. 

Theorem 1A. Let n = 2, and choose 1 ~< 7 < 2, T >  0, and a compact 
"observation set" K c  R 2. Then given any number s with 1 < s < (7 - 1 ) - ~, 
there exists a constant A such that for any initial data ~ ~ L~ x S ~), the 
family f~ of solutions of the problem (5), (6), (7a) satisfies 

I0 fK z, fs, JY (" x, ax at ll ,L  

The proof of this theorem (as well as the proofs of those below) relies 
on certain estimates of the "ergodization time for linear flows on tori" 
which we discuss (and prove in the two-dimensional case) in Section 5. 
These two-dimensional estimates are optimal in a sense which is clarified in 
Section 5. However, for tori of dimension greater than two, the estimates 
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available on ergodization times are less precise. This is because in two 
dimensions, they are obtained using a continued fraction expansion of the 
slope of the direction vector, which is known to be an optimal approxima- 
tion. In higher dimensions, this method no longer works, as it leads to a 
problem of simultaneous approximation of several irrationals by rational 
numbers. 

Despite the lack of sharpness of the higher dimensional estimates due 
to Dumas, (s) our result based on them is as follows: 

Theorem 2A. Let n > 2 ,  and choose 1 <~y<n/(n-2/3), T > 0 ,  and 
a compact set K c R ' .  Then given any number s with 1 < s < ( y - 1 )  -~, 
there exists a constant A such that for any initial data ~b E L~ • S"-~), 
the family f ,  of solutions of the problem (5), (6), (7a) satisfies 

fo J's~ x, o )1 a:, at A,,' +s-,,,,2,,li,. 

Remark 2. The estimates provided in Theorems 1A and 2A are not 
optimal. This is one of the shortcomings of our method, which uses L ~ 
bounds for ~ rather than L ~ bounds or bounds on the free path distribu- 
tion/z~(t). In the case of a Poisson random distribution of scatterers, as dis- 
cussed in ref. 3, the right-hand side of the estimate in Theorem 1A decays 
exactly like e "-y("-  ~). We doubt, however, that such an estimate can be 
obtained in the periodic case. A slightly weaker estimate may be obtained 
using methods very different from those presented here: see ref. 18. 

4.2. The Case of Partial Absorption/Reflection 

We next state theorems for partially absorbing obstacles which closely 
parallel those for totally absorbing obstacles. However, the proofs of the 
theorems below are considerably more complicated, and lead to less precise 
estimates of the rate of decay of the mean free path: 

Theorem lB .  L e t n = 2 ,  andchoose  l ~ < y < 2 , 0 ~ < ~ < l , T > 0 ,  and 
a compact set K c R  2. Then there exist constants b>O, B>O, and e0>0  
such that for any initial data ~b ~ L~176 x S ~), and for 0 < e < Co, the family 
f~ of solutions of the problem (5), (6), (7b) satisfies 
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Theorem 2B. Let n > 2 ,  and choose l<<.),<n/(n-2/3), 0 ~ c t < l ,  
T > 0 ,  and a compact  set K = R ' .  Then there exist constants b >0 ,  B >  0, 
and e o > 0  such that for any initial data r 1 7 6  and for 
0 < e ~< eo, the family f~ of solutions of the problem (5), (6), (Tb) satisfies 

r dx dt fo fic~z~ ~s,-i [f~(t, x, co), dco <~ Beb ['r 

R e m a r k  3. These results partly correct the errors that appear in ref. 1. 

R e m a r k  4. Theorems 1A and 2A (total absorption) apply to a more 
general class of scatterers than the spheres described in Eq. (1). In fact, 
Theorems 1A and 2A clearly apply to any class of scatterers which contains 
the scatterers defined as the complement of Z ,  in Eq. (1). More  specifically: 
let Z', be a family of open sets such that Z'~ c Z, for all e > 0; then if r', 
denotes the exit time relative to Z',, one has r'~(x, co)~<r,(x, co) for all 
xeZ'~. In particular, if r ,(x, co) ~ 0 a.e., then r',(x, co) ~ 0 a.e.. 

Remark 5. Using elementary distributional calculus, it is not  dif- 
ficult to show that for any dimension n, ~'c <~ n/(n - 1). It therefore follows 
from Theorems IA and IB that, in two dimensions, yc=  2, as predicted by 
dimensional analysis (2), (3). On the other hand, Theorems 2A and 2B 
show that n/(n - 2/3) ~< ~'c ~< n/(n - 1 ) in higher dimensions. 

To see that y,.<~n/(n-1), first note that if ~ =  1 (total reflection) is 
allowed in Eq. (7b), then by the Maximum Principle, nonnegative initial 
data ~ >/0 give rise to nonnegative solutions f~ i> 0 with ]Lf~ [[ L~ ~< H~[[L ~ for 
all t i> O. In fact, the same inequality holds for any ~(0 ~< ct ~< 1 ), since, for 
fixed ~b and fixed t, ILf~]IL~. is monotone  decreasing with ~. 

Let { �9 } denote the operator  which nullifies functions over obstacles; 
in other words, {f~}(t, x, co)=0 for xCZ~, and {f~} agrees with f~ other- 
wise. It not difficult to see that 

0,{f~} = {O,f~} and 0.,.{f~} = {OxL } + nx(f~,0z+) fi~z, (10) 

where n,. is the inward unit normal to OZ~ at x, 6oz~ is the Dirac delta den- 
sity concentrated on 0Z~, and 

is the "jump," or exterior limit, off~ at OZ~ (see, e.g., Schwartz, 1~5~ Chapter  
2, w Example 1). Therefore {O,f~} + coo. {0.Oct} = 0 leads to 

0,{f~} + cco. 0,-{L} = cco'n.,-(L~oz:) Ooz~ (I1) 
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Now integrating the right-hand side over [0, T] x K x  S "-~, we find 

~: fx fs._, eog"n.,-(f~,~z*, ) do9~az, dt 

~<2nc II~IIL~ fK ~oz, 

T(dia~m~" lS,,-,l (re~,),,-, <2~ell~llL~ ', a e /  

= O(e yc'- 1)- ' )  (12) 

from which it follows that, for every ? > n / ( n - 1 ) ,  we have 
O,{f~} +co9.0,.{f~} ~ 0  in the sense of distributions as e ~ 0 .  In other 
words, y > n/(n- 1 ) leads to a free transport equation in the macroscopic 
limit, so that ?c ~< n/(n - 1 ). 

R e m a r k  6. As long as one is interested in estimating the mean free 
path, one can argue that it suffices to treat the fully absorbing case. 
However, as we shall see below, bounds on the exit time in a given direc- 
tion co depend crucially on how "rationally independent" the components 
of co are. Specular reflection can change a direction with rationally inde- 
pendent components into a direction with rationally dependent com- 
ponents. In other words, the bound on the exit time which we have can be 
destroyed by the interaction with the scatterers. For this reason, we treat 
the case of partial absorption as well below. 

5. E R G O D I Z A T I O N  RATES FOR LINEAR FLOWS ON THE T O R U S  

This section is a self-contained discussion of the ergodization rates for 
linear flows on the torus developed in Dumas tS) and used in the proofs of 
the principal results announced above. We also derive an ergodization rate 
in the two-dimensional case which is mentioned in Remark 3.2 of ref.8 but 
is not explicitly calculated there. 

5.1. Linear F lows on T": Def in i t ions  and Nota t ions  

Given a direction vector rueS  "-~, we define the linear flow on 
T " =  R"/Z" associated to co as the family of maps 

c o , : T ' ~ T "  g ivenby  OF-+O+to9, teR (13) 

The maps co, are well defined: if y - y ' ~ Z ' ,  then clearly 
(y + to9)- ( y ' +  to9)~ Z ' ;  moreover, since the translations by the vector to9 
form a one-parameter group of C ~ transformations of R ' ,  by passing to 

822/82/5-6-12 
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the quotient, we deduce that co, defines a one-parameter  group of C ~ 
transformations of  T". 

A rectilinear orbit segment of T" starting at 0 is a parametrized curve 
of  the form 

U ~,(0)  (14) 
a < t < b  

where a and b are real numbers. Of  course, the complete orbit of  0 is 
obtained when a = - ~  and b = +oo. 

Given 0ET" ,  there is an open neighborhood U of  0 in T" dif- 
feomorphic to an open set V in R"; we equip U with the pullback metric 
of  the Euclidean metric on V. In fact, it is the unique metric on T" which 
is invariant under all transformations co, for all t >/0 and every co e S"-~. 
The T" equipped with this metric is a complete Riemannian manifold called 
the fiat torus of  dimension n. Its geodesic curves are the rectilinear orbit 
segments defined above. The associated geodesic distance is 

dist{0, 0'} =inf{ Ix -x ' l lO=xmod 1 , 0 ' = x ' m o d  1} (15) 

Fix 1 >/R > 0 and let #R/2(0) be the ball of  diameter R centered on 
0 e T". We say that the flow co, with direction vector co e S" - L ergodizes T" 
to within R after time T if and only if 

[3 ~ (16) 
O~t<~ T 

for every 0 ~ T". This condition is clearly independent of  0: for all 0, $ e T" 

U co,(~R(0))= U c~ b} (17) 
O<~t<<.T O<~t<<.T 

so that 

if U ~ then U c~ (18) 
O<~t<~T O<~t<<.T 

5.2. The Special Case of Linear F lows on T 2 

On T 2, we restrict ourselves to the class of  flows with directions 
o~ = (co j, co_,) "between 0 ~ and 45~ i.e., directions belonging to the eighth- 
circle ~ defined as 

~ = {(col, o~2) e SI I ,v/-2/2 < col < 1 and 0 < co2/col < 1 } (19) 
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(Note: we use (.Ol, oJ 2 to denote the components  of  the direction co, even 
though the subscript t appears in our  use of  co, to designate the flow with 
direction co. Since we never consider the time-1 or time-2 maps of  co,, this 
should not cause confusion.) 

Since we are only interested in directions with irrational slope (direc- 
tions with rational slope do not generate ergodic flows), we have 
eliminated the directions co = (1, 0) and co = (v/2/2, v/2/2). The entirety of 
linear flows on T 2 is then obtained by considering the seven remaining 
open sectors of  directions in S 1 which we reduce to ~ by symmetry. 

5.3. The Correspondence Between Rotations of T I = R / Z  and 
Linear Flows on T 2 

For  O < f l < l ,  we define the rotation .~p:T l --*T I by ~p(x)=x+fl 
mod 1. We say that ~p fills T ~ to within R (0 < R < 1 ) after N iterations 
if and only if for every x ~ T ~ 

N 
U ~l~(IR(x)) = T l (20) 

k = l  

where IR(x) designates the closed interval of  length R centered at x E T ~. 
There is a one-to-one correspondence between rotations on T ~ and 

linear flows on T2: 

�9 For  co = (col, (02) f f~" ,  the Poincar6 map of  co, induced on a vertical 
section of T 2 is the rotation Ro)~o),_. 

�9 Conversely, given a rotation Np: T ~ ~ T ~ with 0 < f l  < I, the linear 
suspension of  ~p on T 2 is the linear flow co,: T 2 ~ T 2 with direction 

This correspondence also establishes a link between the ergodization 
time for linear flows of  T 2 and the number  of iterations of  the corre- 
sponding rotation necessary to fill T~: 

L e m m a  1. Let co=(cot ,  co2)e~-  [cf. (11)] and set fl=col/co2. I f ~ p  
fills T ~ to within R after N iterations, then co, ergodizes T 2 to within co~R 
after time T=N/co~. 

Proof. (Elementary geometry.) 
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Remark 7. In particular, Lemma 1 shows that co, ergodizes T 2 to 
within R after time T =  x/~N, since ~/2/2 < col < 1. 

5.4. The Ergodization Time for Flows in Two Dimensions 

We now introduce the set ~.(s,  C) of "highly irrational" direction 
vectors satisfying Diophantine conditions: 

~ , , ( s , C ) = { c o e S " - ~ l l c o . k l > ~ C l k l - S V k e Z " \ { O } }  (21) 

We recall that, for s > n - 1, ~,,(s, C) is nonempty for small enough C > 0, 
and in fact meas{~,(s ,  C) c} o 0 as C o  0 (here the superscript c denotes 
the complement in S"-~). 

The main results here are the following theorem and its corollary. 

Theorem 3. Let 0 < R < l ,  c o e ~  [cf. (9)] and set fl=coz/col. If 
coe~2(s, C), then ~p fills T I to within R after [(3v,~)~/(CR")] iterations. 
(Here [x ]  is the integer part of x.) 

The result we use to prove Theorems 1A and 1B is the following. 

Corollary 1. co e ~2(s, C ) = c o ,  ergodizes T 2 to within R after time 
T =  3~(x/~) s+ ' /CRL 

Proof. Apply Lemma 1 to Theorem 3. 

5.5. The Ergodization Time for Flows in Higher Dimensions 

Before proceeding to the proof of Theorem 3, for comparison we next 
state the best ergodization time known to us in higher dimensions n > 2, 
then follow with a simple conjecture and a remark on how the class 
9,(s, C) may be enlarged while maintaining the ergodization time. 

Theorem 4. co ~ N.(s, C ) ~  cot ergodizes T" to within R after time 
T = •1CR" + ,,12. 

The constant x appearing in Theorem 4 depends only on n and s, and 
involves the Sobolev norm of a certain "smoothest test function." It is given 
explicitly in ref. 8, where complete proofs of Theorem 4 (called Theorem 1 
in ref. 8) and related results appear. 

Remark 8. Based on the way this estimate enters into the proofs of 
Theorems 2A and 2B, we note that it would be consistent with Yc = n/n - 1 ) 
if the optimal ergodization time appearing above in Theorem 4 were of the 
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form T =  x/(CRS). In fact Remark 5 together with the proof of Theorem 2A 
show, that this is the best possible ergodization time, at least in terms of 
its dependence on an inverse power of R. 

Remark 9. Although we do not make use of it in this paper it is 
worth noting that the class of direction vectors co �9 S"-~ whose ergodiza- 
tion times are comparable to those of Theorems 3 and 4 is in fact larger 
than ~,(s, C). This is because, given a fixed R > 0, even co � 9  with 
rationally related components will fill T" to within R, provided the rational 
relations occur at sufficiently high order. This can be quantified by defining 
the set of "nearly highly irrational" direction vectors satisfying Diophantine 
conditions truncated at order N: 

N,,(s, C, N) = {co �9 S" -~ I Ico" kl t> C Ikl -~ Vk �9 Z" with 0 < Ikl ~< N} (22) 

It is easy to see that N,(s, C) is a Cantor set in S " -  ~, and that for each 
N <  oo, N,,(s, C, N)  is an approximating superset of N,(s, C) consisting of 
finitely many connected components with nonempty interior. In higher 
dimensions n > 2, it is possible to show that there exists a "critical cutoff" 
Ncrit such that N>~Ncrit ensures that flows with direction vectors 
co ~ ~, (s ,  C, N) retain the ergodization time of Theorem 4 up to a factor 
depending on N. Details and an estimate of NCr~t can be found in ref. 8. 
In two dimensions, the situation is considerably simpler: the proof of 
Theorem 3 which we give below shows that NCrit ~< 3/R. 

5.6.  P roo f  of  T h e o r e m  3 

ProoF. Part 1. A bound on the growth o f  the denominators in the con- 
tinued fraction expansion o f  fl = co,_/co i. 

Let the rational number p,/q, ,  be the n 'h convergent in the continued 
fraction expansion of fl=coz/co~. We use the following properties of the 
sequence of convergents {p, /q , ,} , ,~l  of f i e  Q, 0 <fl  < 1 (see, for example, 
Arnold ~2~ or Schmidttl4)): 

(i) Rational approximation: 

fl Pk 1 1 Vk, - ~  < - -  <--~ 
qkqk+l q; 

Growth of denominators for f lq~Q:ql=l,  qk<qk+l, and (ii) 
qk ---~ oO. 

(iii) Convergents not greater than 1: Vk, 1 <~Pk <~qk" 

According to (ii), we may choose an index k so that qk<~ 3/R <qk+l .  
Fixing this value of k and multiplying the first inequality of (i) by col q k, 
we obtain 
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1 o91 
- - >  >lo92qk--og~pkl--=log.(--pk, qk)l>~Cil(--pk, qk)ll -'~ 
qk+l qk+~ 

CR ~ 
= C(p~ + q~)-s/2 >1 C(2q~.)-s/2 > / _ _  (23) 

(3 x/~) s 

From this we deduce that qk§ l < [(3 x/~)s/CR']. 

Part 2. Shadowing of  the (periodic) orbits o f  ~p~.+,/qk+ , by orbits of  .~p. 

Set r=pk§ ~, which is rational in lowest terms. The sequence 
{,~Y(X)} c T l is clearly periodic with period qk +1 for all x e T ~. In fact, Nr 
fills T I to within exactly 1/qk§ < R/3 after qk+I iterations. It is easy to see 
that the first qk + ~ iterations of Nr are shadowed by those of ~p. 

More precisely: for every 1 <~j <. qk + l and all x e T ~, we have 

[Pk + l C02~ 1 1 R I 

, < (24) dis t{~(x) '~ 'P(x)}"~Jkq--~+l  og~/l<qk+lqz+~ qk+l 

NOW, since #,. fills T l to within R/3 after qk+J iterations, and since each 
iterate ~.~(x) is shadowed to within R/3 by ~?~(x)(1 <~J<~qk§ it follows 

that ## fills T t to within R after q,+l  < [(3 v/2)TCR ~'] iterations. I 

Remark 10. In Part 1 above, whether fl = co2/o9 ~ is rational (so that 
its continued fraction expansion terminates) or irrational, it is still possible 
to choose k so that qk <~ 3/R < qk § ~ provided o9 e aJ,,(s, C, N) with N >I 3/R, 
as the reader may easily check. This establishes the last part of Remark 9 
(since the rest of the proof goes through unchanged). 

6. PROOFS OF PRINCIPAL RESULTS 

The proofs of Theorems 1A,B and 2A, B differ only in the estimate of 
the ergodization time, which in turn depends on the dimension of the 
ambient space. We therefore give complete details of the proofs in the two- 
dimensional cases only (Theorems 1A and 1B). 

6.1. Proof of Theorem 1A 

Proof. We begin by estimating the measure of the complement of 
~,(s, C) in S t (with respect to the uniform measure/~ on S~). From elemen- 
tary geometry, we have 

C 
/J{~J2(s, C) c} =It{S~\CJ2(s, C)} ~<KI ~ IklS+l-CK, p(s+ 1) (25) 

0 ~ k ~ Z  2 
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for some constant  K l > 0 ,  and where p(s+l)=Zo~k,z ,_lk[ -Is+ll 
converges for s > 1. 

It is clear (see the definition) that  if the flow m, with direction vector  
09 ergodizes T] ,  = R2/(aeZ) 2 to within 2re ~' after time T,,  then Vx e Z~ the 
collision time r~(x, og)~<Te. We showed in the previous section (see 
Corollary 1) that  every flow with direction co e~2(s ,  C) ergodizes 
T 2 = R 2 / Z  2 to within (2r/a)e ~-1 after time 3~'(~/2)'~+lC-3((2r/a)e~-t)-L 
Consequently, every vector  09 ~ 92(s, C) ergodizes T~,, = R2/(aeZ) 2 to within 
2re y after time 

3s(x//2) s+l 
= a  ~ +'~'- ~ ,' 3"~(x/2)'+ ~ e ' - ' ~ ' -  ~)' (26) 

T~ =ae C((2r/a) e ~'- l),, C(2r)S 

Now let s be such that 1 < s < ( ) , - 1 )  -~. According to the formula 
above, at any x e Ze, directions co belonging to ~2(s, C) have collision 
times t a x ,  co) which we estimate as 

(x, o9) ~ Z~ x ~2(s, C ) ~  r~(x, co) ~<-~-e I -(~,- l)., (27) 

where 

K2 = a I +~ ' -  ))'" 3"(v'~)" + l (28) 
c(2r)" 

and we see that re vanishes together with e on Z ,  x ~2(s, C). We therefore 
decompose the initial data  $ into the disjoint sum 

= $1 ~2(.,.. cl + $1 w_l~. cl~ (29) 

and we consider the corresponding decomposi t ion of the solution of (5), 
(6), (7a) 

f ,  = g,  1 ~2(~, c ) +  he l~(s. c), (30) 
It follows that 

f:.IK~z fs, lf~(t, x, ~ d~ dx dt 

= ~or f ~ z  f~.(,, c) lgAt' x' c~ dc~ dx dt 

+ fo~ f r~z  ~,_(.,., c)~ ]h~(t' x' c~ d'~ dx dt 

~<-~-e ~ -'"-~)~meas{K}Znll~bllL,. + Tmeas{K}  CK, p(1 +s) I[~bl[z~_ 

A( ~'-'~'-".') ~<~ c+ ~ II~IiL~ (31) 
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where 

A = 2 meas { K}- max { TK~ p ( I + s), 2nK._ } ( 32) 

The bound on the right-hand side of (31) is minimized by choosing 
C=e tl+s-~v2 (the so-called "distinguished limit"), in which case the 
integral on the left-hand side of (31) is bounded by Ae (1 +~-Y~VZlIq~IIL~, as 
desired. 

Remark 11. If, instead of Theorems 1A and 2A as stated (with their 
order estimates of the rate of decay of the integral with e), one wishes to 
prove only that 

T 

lim f f f [f.(t,x, co)ldcodxdt=O 
~ O a o  aK~Z~aSn-I 

it suffices to note (see the first part of the proof above for n = 2) that 

(33) 

meas ('] (~.(s, C))" =O (34) 
s > n - -  I 

C > 0  

from which it follows that for almost every (x, co) �9 Z~ x S"-  ~, the time to 
collision z,(x, co) vanishes with e. 

6.2. Proof of Theorem 1B 

Because it is somewhat longer than the proof just given, we break the 
proof of Theorem 1B into parts (a)-(f). 

Proof. (a) Solution of the Transport Equation. We denote by 
(X.(t, x, co), t'2~(t, x, co)) the "reverse broken flow" of the system (5), (6), 
(7b) on Z.  xS t. More explicitly, using the method of characteristics, we 
may write this flow as the solution of the system 

ds'2~ 
dX.=dt - I2 . ,  dt = O, X. � 9  (35) 

X~(O,x, co)=x, S'2~(0, x, co) = co (36) 

X~( t+O)=XAt -O) ,  s X~eOZ~ 

We denote by (37) 

~t'~(t, x, co) = card{ 0 ~< r < t[ X~(z, x, co) �9 aZ~/ 
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the number of collisions experienced by a particle with initial condition 
(x, to), moving backward in Z,  for a time t > 0. The value o f f ,  after time 
t is then 

f.(t ,  x, co) = ~ x . .  . . . .  '~(X.(t, x, to), g2~(t, x, o9)) (38) 

(b) Decomposition of the Solution. As in the proof of Theorem 
IA, we decompose the solution f ,  into a disjoint sum of Diophantine and 
non-Diophantine directions: 

f~=g~+h~, where g~=f~l~.(s, Co), h~=f~l~(~.,Co)C (39) 

and where Co > 0 will be determined later. 

(c) Decomposition of the Integral As in the proof of Theorem 1A, 
we write 

~< T II~bllL~ meas{K} CoKip(1 +s) 
T 

+ f o l k  f~  Ig'(t 'x'to)ldtodxdt 
r~Z~ .(s. Co) 

~< Tll~bllz~ meas{K} CoKip(1 +s) 

Now we know that 

(x, to) e Z, x Nz(s, Co)=~ r,(x, to) <~ K2 Co l e I-r T,~ 

(40) 

(41) 

for f K f~, o& ~(' ...... ) dto dx dt 
c~ Z~ .(s. Co) 

[cf. Eqs. (26)-(28)]. We shall later choose Co so that T ~ --* 0 as e ~ 0, so 
we may assume that e0 is small enough to ensure that 2T~ T for 
0 < e ~< eo. We then split the last integral into an integration over the time 
intervals [0, 2T ~ and [2T  ~ T] as follows: 
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The first integral on the right-hand side of (41) is easily bounded by 

2T ~ meas{K} 2n = 2/(2 C O te t - , r - lU meas{K} 2zt 

As for the second integral on the right-hand side of (41), we modify the 
argument of ~ in two ways which do not increase ~A/~. 

First, for all (x, co)e (Kc~Z~)x~2(s ,  Co), we have r,(x, co)<~T~ in 
particular, for such (x, 09) and for all t e [2T ~ T], we have t > r,(x, co), so 
that on the interval of integration [2T ~ T], we may shift the time by 
r,(x, co) and particles along their trajectories a distance cry(x, co) to obtain 

~'~(t, x, co) >/~'~(t - r~(x, co), x - cry(x, co)co, co) (42) 

Second, for all t E [ 2 T  ~ T] and all (x, c o ) ~ ( K n Z , ) x ~ 2 ( s ,  Co), we 
have t/2 >1 r,(x, co). Since ~ is monotone increasing in its first argument, 
it follows that for such (t, x, co), 

~'~( t -- r~(x, co), x -- cry(x, co)co, co) >1 JV~( t/2, x - cry(x, co)co, co) (43) 

The right-hand side of Eq. (41) is therefore bounded by 

2T~ 2 ~ + I , = 2  K~ '-~r-l)"meas{K} 2 ~ + I ,  (44) 
Co 

where 

L =  ffTO fK,~z f ~ , .  Co O~J",W2 . . . . . .  ~.,.,,o,,o.O~ dco dx d t (45) 

(d) Passage Through Reflection. We introduce the periodicized (or 

where ny is the inward normal at the point y ~ 0 Y~. 
Now let 

. ~ = { ( y ,  co)eOY~ xSt I 3keZ2\{0} s.t. ~(ny) co.k=0} (48) 

(46) 

(47) 

~: = {(y, co) ~0r ' ,  • t I co.n.v>0} 

3+(s, C ) = A {  c~(OY~ x ~2(s, Co)) 

punctured toroidal) domain Y~ associated to Z~ by writing Y~ = Z, / (aeZ)  2. 
We note that Y~ has compact closure, and that its boundary is a single 
circular obstacle of radius rd. We also defme the boundary domains A~ + 
and A~(s,  C) by 



M FP for Periodic Array of Spherical Obstacles 1403 

The set .~, is clearly of dy d09-measure 0. On the other hand, linear flows 
on the torus with irrational slope are topologically transitive (i.e., the orbit 
of each poin t is dense). It follows in particular that for all (y, 09)r one 
has rE(y, ~(ny)09) < +oo. We may then define the boundary (or reflection) 
map 

and the "nice" set 

by ~--(y, 09)= (y--r,(y,~l(ny)09)~l(ny)09,~(ny)09) 

(49) 

N 

e.N(s, c )=  N ~--k(a~+( s, c)) (50) 
k = 0  

consisting of elements (y, 09)~ zJ+(s, C ) \ ~  whose first N iterates under J-  
belong to zJ~(s, C). 

Now consider the measure dv, = I09.ny I dy d09 on A, +. We have 

v. (~(s ,  c) c) = ,,.(3~ \ ~ ( s ,  c)) = vo U s--k(~Z(  s, c) ~) 
\ k = O  

N 

~, v~(~---k(zl+(s, C)C))--(N+ 1)v~(z~+(s, C) c) 
k = O  

(N + 1 ) 21tre~CK~ p(s + 1 ) (51 ) 

where we have used the fact that J" preserves the measure v~ (see, e.g., 
ref. 4). 

(e) Further Estimates. We return to the problem of estimating the 
integral I~ in Eq. (45). First, we define the "lift" d~(s ,  C )~  Z~ x S 1 of the 
nice set r C) by 

d ~ ( s , C ) = { ( x , 0 9 ) ~ z ~ •  (52) 

where [(x, 09)] is the equivalence class of (x, 09) for the relation 
(X, 09) ~ (X', 09) "r --X' e (aeZ2). 

We introduce an e-dependent order parameter C~ >0  (to be chosen 
later so that U] --* 0 as e ~ 0), and we separate It into an integral over 
initial conditions giving rise to trajectories whose directions after one colli- 
sion belong to the nice set rift(s, C~), and an integral over the complement 
of those initial conditions. In other words, 

L ~ J ~ + L  ~ (53) 
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where 

J~=if ' f ,~,.~ i~,.~,,~o ~ .,~,p- ....... ~.,.,.~.,.~ 

x I gc . . . . . .  I.,-. o,)o,, o,)~/u,(~, c,)~ dco dx dt (57) 

x 1 g.,-~a ...... )o,. o,)~.~,~(~, c, wl doJ dx dt (58) 

We set O~=2KzNCf-~e  ~-~-~'~,  where N and C~ will be chosen later so 
that  N ~ o o ,  C ~ O ,  and 0 ~ 0  as e ~ 0 .  We restrict Co>0 so that  
0<e~<eo  ~ 0 ~  T. We have 

J~<<.O~meas{K} 2rc=2K2NCi-~e~- 'Y-~)~meas{K}  2n (59) 

On the other hand, if t/> 0, and if (x, co) e d ~ ( s ,  C~), then because of the 
way 0~ is defined, at least N collisions occur on the interval [0, t /2]; i.e., 
(t, x, co) e [ 0~, T] x sr ~(s, C n) =~ JV~(t/2, x, co) >/N. Therefore 

J~ ~< T~t N meas{K} 2r~ (60) 

In order to estimate the integral L" in Eq. (54), we are going to define 
a new compact  set K '  which is slightly bigger than K, and which encom- 
passes the first collisions of  all particles emanat ing from K in the directions 
~2(s, Co). By restricting eo such that  0 < e ~< eo ~ c T  ~ ~< 1, we ensure that  
no particle travels more than unit distance on the time interval [0, T ~ we 
may then take 

K ' =  { x ~ R  z [ d is t{x,K} ~< 1} (61) 

f . . . . . . . . .  , . . o , o . o ,  

~0 ~ K ~ Z ~  "ff'2(s, CO) 

x 1 I(.,--,'.,(x. ~,~,o, o,i ~,~r c,)l do9 dx dt (54) 

L~= ~: fxc, z f~2,s, Co ~.,~./2 . . . . .  ,x..).,., 

x 11 x-c~,(.,-. ,o~,o. , o ~ , ( ~ .  c~llq dto dx dt (55) 

In order to estimate J~, we introduce yet another  e-dependent order 
parameter  0~, to be chosen shortly, and we write 

J" = J~ + J~_ (56) 
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Let d2~ be the image measure of dxdto under the map (x, to)~--* 
(x-cry(x ,  to)w, to). In other words, d2, is the measure on F + given by 
d2, = r+(x,  to)(n,., co) dx dto, where r~(x, co) = r~(x, - co )  is the "forward" 
time to collision, and n,. is the inward unit normal to OZ~ at x. Below we 
shall also denote F~+(s, Co)=F~ + c~[(OZ, c~K')x~2(s, Co)]. With these 
conventions, we see that the image of ( K n  Z~) x ~,(s,  Co) under the map 
( x, co)~  ( x - cry( x, to)to, to) is contained in F~+ ( s, Co), and we may there- 
fore write 

L ' ~< f r f  a ''~"/2 ..... )d2~ dt (62) 
ao : r+ (s.Co)~(.~/~(s.co: 

Rewriting L ~ in this way amounts to a change of variables that is well 
known in the theory of neutron transport. (7) Since the compact set K'  con- 
tains no more than (diam K'/ae) 2 obstacles, it follows that 

K,  i ' K '  2 
L"<~T-Cooe-'"-l"(dlam\ '~e /~ (N+l)ZnrerC, K , p ( s + l )  (63) 

( f)  Order Parameters and Final Estimate. In view of the 
inequalities and Eqs. (40)-(63), we have shown that the following bound 
holds: 

T 

~ Z~ I 

~< II~IIL~ (K3Co + g4Co'e'- '~'-l)" + J~ + J~_+ L~) 
~1 --(y-- l)s N~I - ( r -  I)s 

~< II~bll,: K3Co+K4 C----~ +K4 Cl 

+ KsaN + K6 ~NC] e(),_ ]>~] -.,.~) (64) 

where 

K3 = TK.,p(s+ l) meas{K}, /(4 = 4nK2meas{K} 

K 5 = 2rrTmeas{K}, K6 = 4z~rTKl K,_p(s + I )(diam K'/a) 2 
(65) 

We now choose the order parameters and constants Co, C,, N, b, 
B, s, so that the integral in (64) vanishes with e, and the conclusion of 
Theorem 1B holds. By hypothesis, 1 ~< 7 < 2. First, choose b > 0 such that 
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0 < b < (2 - ),)/9 < (2 - ),)/8. F o r  y = 1, the desired inequali ty below holds 
for any s >  1; for 1 < y < 2 ,  set s = ( 2 b + y -  1 ) / ( y -  1 ) >  1. Final ly,  take 

C o = e  z - y - sb ,  Ci = e  z-y-4b,  N = e  -b (66) 

and restrict 0 < eo < 1 so that  0 < e ~< eo ~ ,~v = , ~ - ~  <~ eb. Then, tak ing  all 
restrictions on eo into account,  for 0 < e < e0 it is not  difficult to verify that  
Co --* 0, C~ --* 0, N--* ~ ,  T O --* 0, 0~ --* 0, as e --* 0, and that  

T 

~OIK IS I f ' ( t ' x ' c~176  (67) 

where 

B =  K3 + 2Ka + Ks + K 6 | (68) 

Remark 12. In order  to carry  out  the proofs of  Theorems 2A 
and 2B, it suffices to repeat  the proofs jus t  given, replacing as appro-  
priate  the est imate of  the ergodizat ion  time in two dimensions (Section 5, 
Corol lary  1) with the estimate in higher dimensions (Section 5, Theorem 4). 
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